LIBRARY

N65-88354

SPACE TECHNOLOGICAC CAR SPACE PARK PETOROS TRACTORES

SPACE TECHNOLOGY LABORATORIES, INC. No. One Space Park Redondo Beech, California

A STUDY OF THE CONTROL AND DYNAMIC STABILITY OF THE SATURN C-1 CONFIGURATION Final Report

Volume III. Technical Data

20 April 1962

Report No. 8620-6002-RU-000

Contract No. NAS 8-1624

Prepared for

GEORGE C. MARSHALL SPACE FLIGHT CENTER
Huntsville, Alabama

TABLE OF CONTENTS

			Page
1.	INT	ODUCTION	1
2.	GLOS	SARY OF SYMBOLS	2
3.	BASI	C PARAMETERS	7
	3.1	Table of Constant Parameters	7
	3.2	Table of Variable Parameters - All Engines Burning	9
	3.3	Table of Fluid-Slosh Parameters	11
	3.4	Structural-Modes Parameters	12
4.	ADAP	TIVE ANGLE-OF-ATTACK STUDY	19
	4.1	Digital Analysis	19
		4.1.1 Equations	22
		4.1.2 Table of Coefficients	23
	4.2	Analog Computer Simulation	23
		4.2.1 Equations	26
		4.2.2 Analog Computer Mechanization	28
		4.2.3 Table of Constant Coefficients	34
		4.2.4 Table of Variable Coefficients	35
		4.2.5 Table of Variable Coefficients Which Are Held Fixed	38
5.	ADAP	TIVE DIGITAL-COMPENSATION STUDY	39
	5.1	Equations	43
	5.2	Table of Constant Parameters	45
	5.3	Table of Variable Parameters	46
	5,4	Renormalized Bending Data	47
	5.5	Analog Computer Mechanization	5 8
		Table of Computed Coefficients	62
rea F		- S	۸,

ILLUSTRATIONS

Figure		Page
1	Wind Speed versus Altitude Profiles	18
2	Coordinate System for Angle-of-attack Study	20
3	Missile Geometry for Angle-of-attack Study	21
Ļ	Missile Dynamics Computer Mechanization - Sheet 1 .	30
5	Missile Dynamics Computer Mechanization - Sheet 2 .	31
6	Wind Disturbance Computer Mechanization	32
7	Engine Out Computer Mechanization	33
8	Coordinate System for Bending Study	41
9	Missile Geometry for Bending Study	42
10 to 12	Bending Mode Deflection versus Missile Station	58 , 53 , 54
13 to 15	Rending Mode Slope versus Missile Station	55, 56, 57
16 and 17	Missile Dynamics Computer Mechanization Diagrams	60. 61

1. INTRODUCTION

This report is the result of Task 1 of Contract NAS $\hat{\sigma}$ -1624, "Study of the Control and Dynamic Stability problem of the Saturn Space Vehicle, Especially the C-1 Configuration". This task was to prepare a detailed technical description of the missile configuration which was studied and the description is given in this report.

Definitions of the symbols used in the report are given in Section 2. Some of these symbols are also defined in Figures 2,3, 8 and 9 which show the coordinate systems and missile geometry conventions used. Section 3 contains the basic parameters of the missile configuration as specified by Marshall Space Flight Center. These basic parameters were used to compute the parameters given in Sections 4 and 5. Section 4 contains the coordinate system, equations, computed coefficients, and computer diagrams used in the analysis of the adaptive angle-of-attack control system described in Volume II. This analysis consists of a time-variable twodimensional analog simulation to establish the performance capability of this control system. Section 5 contains the coordinate system, equations, computed parameters and computer diagrams used in the evaluation of the performance of the adaptive digital bending compensator described in Volume I. For this purpose, a digital-analog combined simulation study was performed using a time-invariant, two-dimensional simulation of the missile system.

2. GLOSSARY OF SYMBOLS

A	Aerodynamic reference area
A	Acceleration indicated by accelerometer
a x	Acceleration components of the total center of gravity
- -	Autopilot inertial attitude gain
•1	Autopilot inertial attitude - rate gain
Ъ	Autopilot angle-of-attack gain
c ₁	Aerodynamic restoring torque coefficient
c ₂	Control torque coefficient
$^{\mathrm{C}}$ N $_{\alpha}$	Normal force coefficient slope with respect to angle of attack
c.g.l	Center of gravity of missile
c.g.2	Center of gravity of missile exclusive of deflected engines
	and sloshing propellants
c.g.3	Center of gravity of missile exclusive of sloshing propellants
D .	Aerodynamic axial drag
f	Frequency of the ith slosh mode
&	Acceleration due to gravity
h	Missile altitude
r_1	Moment of inertia of missile about c.g.l
^T 3	Moment of inertia of missile exclusive of sloshing propellants
	about c.g.3
$\mathfrak{r}_{\mathbf{n}}$	Moment of inertia of deflected engines about gimbal point
κ _I	Control loop integral gain b
k	Adaptive loop output $\left(\frac{b_0}{a_0 + b_0}\right)$
11	Distance from gimbal to c.g.l
¹ 3	Distance from gimbal to c.g.3
l _n	Distance from gimbal to engine c.g.

l _p	Distance between center of pressure and total center of gravity
M	Mass of missile
M ₂	Mass of missile exclusive of deflected engines and sloshing
	propellants
м ₃	Mass of missile exclusive of sloshing propellants
m _F	Mass of sloshing liquid in booster stage
m _{J.}	Mass of sloshing liquid in second stage
m _i	Model mass of the i th bending mode
m n	Mass of deflected engines
N '	Normal force per unit angle of attack
q	Dynamic pressure
q _i	Generalized ith mode bending coordinate
R*	Control force per unit of control deflection
r	Radial location of control motors from missile centerline
8	Laplace operator
T	Thrust of eight engines
v	Inertial velocity of c.g.2
v	Deflection of the average missile centerline due to an engine
	deflection
v_{R}	Velocity of c.g.2 relative to wind
v _w	Wind component normal to reference trajectory
v	Rotation of the average missile centerline due to an engine
	deflection
x.	Distance from c.g. to ith sloshing mass attach point
z _B	Direction perpendicular to missile centerline
z _B 3	Direction perpendicular to missile centerline extending
3	from c.g.3
z _T	Direction perpendicular to reference trajectory
Z _r	Direction perpendicular to reference trajectory extending
•	from guidance compartment

α	Aerodynamic angle of attack
α_{i}	Angle of attack indicated by angle-of-attack meter
a _y	Angle of attack due to wind
β	Cant of outboard motors
β _{id}	Angle required to cant outboard motors through c.g.l
ro	Path angle
r_1	Tilt angle
3	Control deflection angle
δ _a	Engine actuator output
δ	Engine actuator command input
$\zeta_{\mathbf{A}}$	Acceleremeter damping ratio
	Demping ratio of booster stage slosh mode
ζ _F ζ _L ζ _R ζ _{AE}	Damping ratio of second stage slosh mode
$\zeta_{_{ m R}}$	Rate gyro damping ratio
ζ_{AE}	Angle-of-attack meter aerodynamic damping ratio
ζ _{me}	Angle-of-attack meter mechanical damping ratio
$\zeta_{\mathbf{a}}$ $\zeta_{\mathbf{i}}$	Actuator damping ratio
$\zeta_{\mathtt{i}}$	Damping of the i th bending mode
$\zeta_{\mathbf{n}}$	Engine damping ratio
0	Attitude angle
e _P	Position gyro output
9 _P .	Rate gyro output
$\lambda_{_{\mathbf{F}}}$	Displacement of booster stage aloshing mass from missile
	centerline
$\lambda_{\mathtt{L}}$	Displacement of second stage sloshing mass from missile
	centerline
$\mu_{\dot{1}}$	Ratubof ith sloshing mass to total missile mass
$^{\mu}\mathrm{_{T}}$	Deflection at the engine gimbal station
	Part to a second of the second

This said the second of the second se

•	-	1	·		v	9	v
	ъ	_	_	_		_	

	Done 5
ξ	Page 5 Missile station measured from base
ξ,	Station of c.g.1
ξ_z	Station of e.g.2
ξ_3	Station of c.g.3
ξ _A	Station of accelerometer
\$\frac{1}{2} \text{R} \frac{1}{2} \frac{1}	Station of booster stage slosh spring attachment point
$\xi_{ t L}$	Station of second stage slosh spring attachment point
ξp	Station of position gyro
$\hat{\xi}_{R}$	Station of mate gyro
$\xi_{f r}$	Station of gimbal
ξφ	Station of aerodynamic center of pressure
$\dot{\xi}_{\alpha}$	Station of angle-of-attack meter
τ _p	Time constant of the demodulator
$\phi_{1}(\dot{\xi})$ $\phi_{1}(\dot{\xi})$	Normalized deflection of the ith bending rode at Station
ø' ₁ (ξ)	Normalized slope of the i $^{ ext{th}}$ bending mode at Station $\dot{\xi}$
Ψ	Angle between inertial velocity vector and missile
	centerline
$\psi_{\mathbf{r}}$	Slope at the engine girbal station
^ω A	Acceleranter natural frequency
$\omega_{\mathbf{F}}$	Booster stage slosh mode natural frequency
α <u>Γ</u>	Second stere slosh mode natural frequency
ω^{χ}	Rate gyro natural frequency
w _a ,	Actuator matural frequency
$\omega_{\mathbf{i}}$	Frequency or the ith bending mode
w _n	Engine natural armquar.og

Angle-of-attack meter natural from ency

ω_α

Bending coordinate for the ith mode with control engines removed

Control system error signal

Deflection of the ith bending mode of missile with control engines removed

Slope of the ith bending mode of missile with control engines removed

Trul engines removed

Frequency of the ith mode of missile with control engines removed

3. BASIC PARAMETERS

This section contains the basic parameters of the missile configuration as specified by the Marshall Space Flight Center. These basic parameters were used to compute the parameters found in Sections 4 and 5. Included in this section are a table of the parameters that remain constant throughout the booster flight, a table of the time variable parameters at seventeen times of flight for an all-engines-burning trajectory, a table of fluid-slosh parameters at four times of flight, and structural-modes parameters. The wind profiles suggested by MSFC for use in evaluating control system response to wind disturbances are shown in Figure 1. These profiles were constructed from data given in Reference 1.

3.1 Table of Constant Parameters

A	33.467522	m ²
g	9.79	m/sec ²
I_n	318.54	kg-m-sec ²
1 _n	0.68603	m
m_L	2647.2183	kg-sec ² /m
m _F	1156.1508	kg-sec ² /m
m n	298.34	kg-sec ² /m
r	2.413	m
r β	2.413 6.0	m deg
β		
β δ max	6.0	deg
β δ a max δ a max	6.0 7	deg deg
β δa max ξ A ζ R	6.0 7	deg deg
β δ max	6.0 7 2.5 0.7	deg deg

Table of Constant Parameters (continued)

$\zeta_{\mathbf{a}}$	0.966	
ζ_n	0.07	
$\xi_{\mathbf{A}}$	1630	in
ζ _n ξ _A ξ _p (preferred)	1630	in
$\xi_{\rm R}$ (preferred)	950	in
$rac{\xi_{\mathrm{R}}}{\xi_{\mathrm{R}}}$ (preferred)	100	in
ξ_{α}	1800	in
τ _p	1/282.6	sec
Φ _A	56.55	rad/sec
æ _R	188.5	rad/sec
ω _a	34.5	rad/sec
$\omega_{ m n}$	62.83	rad/sec
ω _{dt}	251	rad/sec

3.2 Table of Variable Parameters - All Engines Burning

Time	L. L. B.	id id kg sec 2/m	F1 X4	о ж	- 18 18 18 18 18 18 18 18 18 18 18 18 18 1	o N U	(T-D)/M1 m/sec2
0	2.51×10 ⁶	45879	069965	0	298345	8.0	13.0
01	2.45×106	+3395	598530	2690	299265	2.00	13.7
20	2.40x10 ⁶	41033	603980	6218	301990	2.00	9.41
8	2.37×10 ⁶	38610	613430	4856	306715	2.00	15.6
옃	2.35×10 ⁶	36187	626250	16902	313125	2.03	16.8
50	2.35×10 ⁶	33764	971000	42541	320500	2.07	17.71
8	2.35×10 ⁶	31342	655400	81700	327700	2.13	18.3
19	2.34×106	39646	664113	78340	332057	2.25	8.61
٤	2.33×10 ⁶	28919	667320	68789	333660	2.30	20.7
.00	2.32×10 ⁶	56498	675290	44325	337645	2.61	23.6
8	2.30×10 ⁶	24073	679810	24085	339905	3.02	27.2
1 00	2.28×10 ⁶	21651	681990	11139	340995	3.37	31.0
011	2.22×10 ⁶	19228	682860	4543	341430	3.51	35.3
120	2.07×106	16805	683170	1770	341585	3.47	9.04
130	1.84×10 ⁶	14382	683270	629	341635	3.29	47.5
138.9	1.58×10 ⁶	12216	683310	602	341655	2.80	55.9
144.9	1.45×106	11489	341660	83	170830	2.67	29.7

. ~

sec m/sec hm o .0000 .0000 10 36 .2 20 77.0 .7 30 132 1.8 40 198 3.4 50 277 5.7 60 365 8.6 67 4,38 11.1 70 473 12.2 80 616 16.6 90 798 21.9 100 1290 35.6 120 1610 44.2 138.9 24.10 64.5	Λ	ч	ଫ	ωí	س ر	ۍ	. 72
36 36 132 132 198 277 365 438 473 616 1021 1290 1290 2410	m/sec		kg/m ²	Ę	i, E	deg	deg
36 132 132 198 277 365 438 473 616 1021 1250 1610 1995	0000		0000.	14.8775	36.4846	0000	0000.
77.0 132 198 277 365 438 473 616 1021 1290 1995 2410	36		82	14.6164	36.4846	0000.	ri.
132 198 277 365 438 473 616 1021 1250 1610 1995	0.77		360	14.4206	36.4846	2.2	2.5
198 277 365 438 473 616 1061 1290 1995	132		116	14.1595	36.4846	9.9	7.0
277 365 438 473 616 1021 1290 1995	198		1738	14.0289	36.4193	13.6	13.1
365 438 473 616 1061 1610 1995 2410	277		2684	13.95365	36.2887	19.3	19.3
438 473 616 1061 1610 1995 2410	365		3325	13.8984	35.9623	26.0	26.0
473 616 798 1021 1290 1610 2410	964		3524	13.8331	25.5054	30.6	30.7
616 798 1021 1290 1995 2410	173		3435	13.8984	35.1795	32.6	32.6
798 1021 1290 1610 1995 2410	616		2923	14.0289	33.9387	38.6	38.6
1021 1290 1610 1995 2410	798		2143	14.2900	32.6984	43.8	43.9
1290 1610 1995 2410	1071		1274	14.6164	31.7193	18.2	148.2
1610 1995 2410	1290		645	15.3345	31.1318	51.8	52.1
1995 2410	1610		298	16.4442	31.1318	54.2	55.1
24.10	1995		135	18.0762	31.3276	57.2	2.5
c u c	2410		6.1	19.8387	32.3720	59.0	4.65
5667	2553		25	20.6220	32.8290	0.00	4.64

3.3 Table of Fluid-Slosb Parameters

		0 sec	40 sec	80 sec	120 sec
Ŧ ₁	m	- 3.45	06	4.57	12.02
<u>x</u> 5	m	- 4.10	62	3.96	11.87
\bar{x}_3	193	- 3.93	49	3.94	11.69
$\overline{\mathbf{x}}^{h}$	m	- 8.41	-9.2 8	9.08	- 5.16
x ₅	m.	-11.81	-12.68	-12.48	- 8.56
$^{\mu}$ 1		.0086	.0114	.0166	.0225
^μ 2		.0097	.0128	.0187	.0304
^μ 3		.0069	.0091	.0132	.0213
μ_{14}		.0577	.0761	.1109	.2039
μ ₅	. · <i>L</i>	.0042	.0056	.0081	.0149
f ₁	срв	.719	.81.3	1.030	1.216
f ₂	cps	.880	.995	1.260	1.633
r ₃	cps	.880	•995	1.260	1.633
r _ų	cps	423	.470	.606	.832
f ₅	cps	. 495	.560	.708	-974

^{1 = 1 105} in. Tank

i = 2 70 in. Lox

i = 3 70 in. rRuel

i = 4 Second stage Lox

i = 5 Second stage LH₂

3.4 Structural-Modes Parameters

First Mode

	7.1.044		M	^	0.4-6	· a
Station	Liftof Mode	Mode Mode	Mode Max	<u>√</u> Mode	<u>Cutof</u> Mod e	<u>1</u> Mode
	Deflection	Slope	Deflection	Slope	Deflection	Slope
in		in-l		in ⁻¹		in ⁻¹
0	. 250	.00070	. 255	.00090	.250	.00093
. 50	.210	.00070	.210	.00094	.215	.00093
100	.175	.00070	.170	.00095	.170	.00094
150	.140	.00070	.125	.00094	.120	.00094
200	.110	.00070	.085	.00092	.080	.00092
250	.075	.00070	.∞5 .045	,00092	.030	.00091
	.045	.00069	.010	.00086	010	.00084
300	-	.00066	030	.00082	050	.00080
350 4 0 0	.015 015	00061	-	.00076	090	
			070		-	.00075
450	045	.00056	100	.00069	120	.00069
500	075	.00048	135	.00060	155	.00062
550	103	.00040	160	.00052	185	.00055
600	130	.00030	190	.00044	210	.00046
650	145	.00020	215	.00034	235	.00036
700	150	.00008	230	.00023	250	.00026
750	145	00005	240	.00012	260	.00015
800	140	00020	240	0	265	.00003
850	120	00034	235	00017	260	00010
900	095	00047	220	00036	 25 5	00024
950	070	00059	200	00056	240	00039
1000	030	00071	175	00070	220	00052
1050	+.010	00080	140	00081	190	00065
1100	.050	00088	110	00091	160	00077
1150	.090	00093	100	00098	120	00088
1200	.135	00098	060	00104	08 0	00098
1250	.185	00100	+.015	00109	040	00103
1300	.235	00104	.085	003.14	+.010	00108
1350	.285	00108	.145	00120	.070	00118
1400	.340	00112	.220	00124	.130	00130
1450	.400	00115	. 280	00129	.200	00140
1500	. 455	00118	. 350	00134	. 280	00148
1550	.515	00121	. 420	00139	.355	00156

First Mode (continued)

	Lift	off	Max (3	Cuto	<u>rr</u>
Station	Mode	Mode	Mode	Mode	Mode	Mode
in	Deflection	Slope in-1	Deflection	Slope in ⁻¹	Deflection	Slope in ⁻¹
1600	٠575	00123	. 485	00143	. 430	00160
1650	.630	00124	.540	00146	.505	00164
1700	.695	00125	.635	00148	.585	00168
1750	.7 55	00126	،۳۱٥	30150	.665	00168
1800	.810	00126	. 780	00151	-750	00168
1850	.880	00126	.860	00151	.830	00168
1900	.950	001 25	.940	00148	.915	00165
1940	1.000	00124	1.000	00146	1.000	00164

Time	Frequency	Modal Mass
Liftoff	1.6318 cps	61.87 lb sec^2/in
Max Q	2.0925 cps	48.21 lb \sec^2/in
Cutoff	2.5601 cps	$35.20 lb sec^2/in$

 $\zeta_1 \approx 0.005$

Second Mode

	Lifto	off	Max Q		Cuto	îf
Station	Mode	Mode	Mode	Mode	Mode	Mode
	Deflection	Slope	Deflection	Slope	De:lection	Slope
in		in ⁻¹		in-l		in ⁻¹
0	2	0009	36	00156	40	00268
50	16	0009	29	001.6	2 8	00274
100	12	0009	20	0016	13	00270
150	08	00088	12	0015	.00	00262
200	03	00084	05	00156	+.12	00250
250	.cı	00078	+.02	0014	. 24	00232
300	.04	00070	.06	0012	.34	00210
350	.075	00060	.14	00108	.42	00186
400	.095	00048	.18	00085	.50	00158
450	.11	00035	.21	0006	.57	00128
500	.12	0002	.23	0003	.67	00096
550	.12	.00000	.24	00002	.69	00059
600	.115	.00020	.24	.00022	.69	00025
650	.10	.00042	.22	.00045	.69	+.00010
700	.08	.00061	.19	.00062	.68	.00045
750	.055	.00072	.18	.00078	.65	.00084
800	.oz	.00076	.11	.00088	.50	.0012
850	02	.00074	.05	.00096	.52	.0015
900	06	.00068	.00	.0010	• ##	.0018
950	10	.00065	06	.00104	.33	.0035
1000	155	.00068	ii	.00115	.21	.00270
1050	20	.00070	14	.00116	.05	.00284
1100	23	.0006	20	.0010	09	.00278
1150	245	00010	22	.00005	18	.0019
1200	24	0009z	24	00017	25	.00115
1250	215	00066	2 3 ·	0003	29	.00072
1300	18	00088	18	0005	32	.0004
1350	14	0011	17	0007	33	.0000
1400	09	0013	13	0011	31	0006
1450	02	0015	08	0015	27	00125
1500	+.05	0017	.00	00168	20	00162
1550	.15	00185	+.08	0018	10	-,0020

Second Mode (continued)

	Lift	off	Max	<u>3</u>	Cut	off
Station	Mode	Mode	Mode	Mode	Mode	Mode
	Deflection	Slope	Deflection	Slope	Deflection	Slope
in		in ⁻¹		in ⁻¹		in ⁻¹
1600	.24	00201	+.20	0033	+.02	- ,0023
1650	.34	00212	+.31	00235	.16	- , 0026
1700	.46	00218	+.42	00235	. 2 8	00285
1750	.57	00220	+.54	0024	. 42	~ : 00 298
1800	.68	00221	+.66	0024	.56	00300
1850	.8 0	00221	+.77	0024	.70	00297
1900	.90	00220	+.9	00235	.85	00288
1940	1.00	00218	1.0	0023	1.00	00276

Time	Frequency	Modal Mass
Liftoff	4.5513 cps	$37.82 \text{ lb sec}^2/\text{in}$
Max Q	4.9971 cps	$48.096 \text{ lb sec}^2/\text{in}$
Cutoff	7.2035 cps	57.173 lb sec ² /in
	$\zeta_2 = 0.005$	

Third Mode

	Liftof	<u>"I</u>	Max (3	Cutoff	
Station	Mode	Mode	Mode	Mode	Mode	Mode
	Deflection	Slope	Deflection	Slope	Deflection	Slope
in		in ⁻¹		in ⁻¹		in ⁻¹
0	1.05	.0064	1.020	.00608	.7	. 00541
50	1.0	.0066	1.000	.00629	, 41	.00575
100	. 65	.00658	. 750	.00632	.204	.00568
150	.385	.00644	.470	.00617	 065	.00518
200	.125	.00609	0	.00575	425	00400 ،
250	12,	.00516	225	.00390	570	.00256
300	35	.00372	335	.00260	645	.00134
350	50	.00328	400	.00156	670	.00030
400	58	.00292	430	.00016	665	000544
450	59	.00Z44	430	00160	625	-,00130
500	555	00156	345	00250	560	00198
550	445	00238	210	00295	455	00246
600	29	00304	070	00318	325	00271
65 0	053	00332	+.10	00311	190	0027h
700	.110	00332	.285	00300	06	00266
750	.210	00256	.435	00262	.06	00242
800	.250	00088	.50	00168	.17	00209
850	.260	00022	.52 0	.00010	.27	00159
900 .	.245	+.00042	.500	.00086	.34	00090
950	.210	.00120	. 440	.00176	· 35	00001
1000	.135	.00264	∙335	.00314	.32	.00088
1050	0	.00288	.150	.00360	.26	.00180
1100	205	.00270	065	.00350	.17	.co 26 0
1150	290	.00100	205	.00194	.055	.00342.
1200	33 5	.00064	305	.00134	075	.00348
1250	- • 355	s#000.	370	.00102	21	.00306
1300	 355	.00010	408	.00070	35	.00211
1350	~.345	00030	42	.00028	485	.00140
1400	320	00086	405	0003 2 8	550	.00072
1450	2 85	00137	360	00121	56 0	.00006
1500	~.230	00182	290	00197	540	00060
1.550	160	00219	185	00242	4 9 0	00128

Third Mode (continued)

	Lifto	ff	Max	<u>Q</u>	Cut	<u>ff</u>
Station	Mode	Mode	Mode	Mode	Mode	Mode
in	Deflection	Slope in ⁻¹	Deflection	Slope in ⁻¹	Derlection	Slope in ⁻¹
1600	06	00249	075	00274	380	00203
1650	.09	00272	.055	00305	220	- ، 00288
1700	. 28	00287	.19	00314	045	00400
1750	.455	00296	.34	00323	+.135	00447
1800	.615	00298	، 51	00328	٠3 3 5	00464
1850	.770	00296	.685	00326	-54	00461
1900	.905	00285	.88	00318	•79	00 111 0
1940	1.00	00269	1.00	00301	1.0	00390

Time	Frequency	Modal Mass
Liftoff	7.0375 cps	274.43 lb \sec^2/in
Max Q	8.1376 cps	$226.03 lb sec^2/in$
Cutoff	13.7366 срв	59.933 lb \sec^2/in
	ζ ₃ * 0.005	

Wind Speed vs. Altitude Profiles

4. ADAPTIVE ANGLE-OF-ATTACK STUDY

This section contains the equations and computed coefficients for use in the study of the adaptive angle-of-attack control system. The coordinate system and missile geometry conventions used are shown in Figures 2 and 3.

The information for this study is divided into two sections, that for the digital analysis and that for the analog computer simulation. Section 4.1 contains a discussion of the assumptions made and the effects included in the digital analysis.

Section 4.2 contains a discussion of the assumptions made and the effects included in the analog computer simulation of the missile dynamics. This is followed by a list of the equations and diagrams of the computer mechanizations for use in the simulation. The remainder of this section contains the computed coefficients for use in the computer simulation.

4.1 Digital Analysis

The equations and computed coefficients for use in the digital analysis of the angle-of-attack control system are presented in this section. The purpose of this analysis is to choose the control system gains that used in the analog computer simulation and to obtain frequency response and transient response data to be used to check the analog computer simulation.

The coefficients for this analysis were computed at three times of flight corresponding to the time when the angle-of-attack feedback loop would be closed, the time when maximum dynamic pressure occurs, and the time when maximum system gain occurs. In using the equations in this section, an attempt was made to include all linear terms consistent with the following assumptions:

- 1. All physical parameters of the missile such as mass, inertia, and thrust are considered constant.
- 2. Aerodynamic forces are assumed to vary linearly with the total angle of attack developed by the centerline of the missile.
- 3. The dynamic equations are for motions in the missile yaw plane. The trim conditions on α , θ , and θ will be zero in this plane. The equations are also applicable to the pitch plane if the trimmed values of these variables may be neglected.

Figure 2
Coordinate System for Angle-of-Attack Study

A

- 4. The effects of fluid slosning in the tanks are neglected.
- 5. The effects of flexible body bending are neglected.
- 6. All sensor instrument dynamics are neglected.

4.1.1 Equations for Adaptive Angle-of-Attack System Digital Analysis

1. Moment Equation

$$s^{2} \theta - \frac{N'(\frac{\xi_{cp} - \xi_{1}}{I_{1}})}{I_{1}} \alpha + \left\{ \frac{I_{n} + m_{1}I_{1}}{I_{1}} - s^{2} + \frac{\frac{T}{4} \left[I_{1} + \sqrt{r^{2} + I_{1}^{2} \cos(\beta - \beta_{id}) + m_{1}^{2} I_{n} \frac{T - D}{M_{1}}} \right]}{I_{1}} \right\} \delta = 0$$

2. Normal Force Equation

$$\left\{ \left(\frac{\xi_2 - \xi_1}{2} \right) s^2 - sv + g \cos \gamma_0 \right\} \theta + \left\{ sv + \frac{T - D - M_1 g \cos \gamma_0 + N'}{M_1} \right\} \alpha + \left\{ \frac{m_1 l_n}{M_1} s^2 + \frac{R'}{M_1} \right\} \delta = 0$$

3. Engine Dynamics Equation

$$\frac{I_{n} + m_{n} I_{n} I_{n}}{I_{n}} \quad s^{2} \quad \theta - \frac{m_{n} I_{n} N'}{I_{n} M_{1}} \quad \alpha$$

$$+ \left\{ \left[1 - \frac{\left(m_{n} I_{n}\right)^{2}}{I_{n} M_{1}} \right] \quad s^{2} + 2 \quad \dot{\zeta}_{n} \quad \omega_{n} \quad s + \omega_{n}^{2} + \frac{m_{n} I_{n} (T - D - R')}{I_{n} M_{1}} \right\} \delta$$

$$+ \left\{ -2 \quad \dot{\zeta}_{n} \omega_{n} \quad s - \omega_{n}^{2} \right\} \quad \delta_{n} = 0$$

4. Angle-Of-Attack Meter Equation

$$\frac{\xi_{\alpha} - \xi_{2}}{v} = 0 - \alpha + \alpha_{1} = 0$$

5. Control Law Equation

$$\left\{-\mathbf{a}_{\mathbf{1}} \mathbf{s} - \mathbf{a}_{\mathbf{0}}\right\} \theta - \mathbf{b}_{\mathbf{0}} \alpha_{\mathbf{1}} + \delta_{\mathbf{c}}^{*} = 0$$

6. Control Integrator Equation

$$\left\{-s - K_{I}\right\} \delta_{c}^{*} + s \delta_{c} = 0$$

7. Actuator Equation

$$-\omega_{\mathbf{a}}^{2} \delta_{\mathbf{c}} + \left\{ \mathbf{s}^{2} + 2 - \frac{1}{\mathbf{a}} \omega_{\mathbf{a}} \mathbf{s} + \omega_{\mathbf{a}}^{2} \right\} \delta_{\mathbf{a}} = 0$$

4.1.2	Table	of	Coefficients
-------	-------	----	--------------

Total of Octivities	100	20 sec	67 sec	138.9 sec
$n'(\xi_{ep}-\xi_1)/r_1$	1/sec ²	.223,5283	2.457713	.04534397
$\left\langle T/4 \left[1_1 + \sqrt{r^2 + 1_1^2} \cos(\beta - \beta_{1d}) \right] \right\rangle$			•	
$+m_n^1_n(T-1)/M_1$ /1	1/sec ²	1.505226	1.614720	3.760221
$(I_n+m_nI_nI_1)/I_1$	****	.00114589	.00112389	.00244245
$\xi_2 - \xi_1$	TO.	.0920378	.1217764	.4502196
¥	m/sec	77	438	2410
g cos To	m/sec ²	9.782785	8.426664	5.042222
(T-D-M_E cosy,+N')/M]	m	5.40hhs	: 2 0.381.39	51
m _n 1/M ₁	m	.004987937	.006903798	.01675426
R'/M ₁	m/sec ²	7.3596861	11.200735	27.967829
$(I_n + m_n I_n I_1)/I_n$		8.633642	8.256156	12.114934
m _n l _n N'/I _n M ₁	1/sec ²	. 3773256	5.7513439	.300600
1-(m _n 1 _n) ² /I _n M ₁		.996795	.995564	.989235
$z \zeta_{n}^{\omega}$		8.7962	8.7962	8.7962
$\omega_n^2 + \omega_n^1 / 1_{\kappa} [(T-D-R')/M]$	1/ s ec ²	3952.2621	3953.1353	3965.5573
w _n ²	1/sec ²	3947.61	3947.61	3947.61
$(\dot{\xi}_{\alpha}^{-},\dot{\xi}_{2})/v$	sec .	. 405290415	.0725231141	.0105519004
z cawa	1/sec	66.654	66.654	66.654
w ₈ .	1/sec ²	1190.25	1190.25	1190.25

4.2 Analog Computer Simulation

The equations, computer diagrams, and computed coefficients for use in the analog computer simulation of the missile dynamics for the study of the adaptive angle-of-attack control system are presented in this section. In using the equations in this section, an attempt is made to include all linear terms consistent with the following assumptions:

- 1. In writing the equations, all physical parameters of the missile such as mass, inertia, and thrust are considered constant. However, in performing the simulation, the significant time variable coefficients of the equations are varied. Some of the time variable coefficients of the equations which produce high frequency effects such as the engine reaction zero, or which do not vary significantly are held fixed at values corresponding to the time when maximum dynamic pressure occurs.
- 2. Aerodynamic forces are assumed to vary linearly with the total angle of attack developed by the centerline of the missile.
- 3. The dynamic equations are for motions in the missile yaw plane. The trim conditions on α , θ , and δ will be zero in this plane. The equations are also applicable to the pitch plane if the trimmed values of these variables may be neglected.
- 4. Fluid sloshing in the tanks is represented by two mass-snring analogs. One mass-spring analog is used to represent the fluid sloshing in the booster stage tanks and the other mass-spring analog is used to represent the fluid sloshing in the second stage tanks. The fluid slosh data given in Section 3.3 was reduced in the following manner: The fluid sloshing in the second stage IH, tank was neglected and only the fluid sloshing in the second stage LOX tank was included in the second stage slosh mode. The mass of the bonster stage slosh mode is the sum of the sloshing masses in the booster stage tanks, the attach point is the center of mass of the slowling masses in the booster stage tanks, and the frequency of booster stage slosh mode is the frequency of the large booster stage ank sloshing fluid. Nonlinea: damping to sadded to the also harden to achdeste marginal stability at the critical times of flight. The slosh data is used in this form since the slosh stability problem is not being considered in this study, and since the slosh modes are being

used in this form since the slosh stability problem is not being considered in this study, and since the slosh modes are being included in the study to determine their effects on the adaptive angle-of-attack control system. This method of representing the slosh modes was adopted at the suggestion of Mr. Helmut Bauer of MSFC. It should be noted that the values of the sloshing masses

and the ratio of the two slosh mode frequencies are held fixed at the liftoff values.

- 5. The effects of flexible body bending are neglected.
- 6. All sensor instrument dynamics are neglected except for the accelerometer dynamics.

The computed coefficients for an all-engines-burning trajectory are presented in this section. This includes a table of the coefficients which remain constant with time, a table of the coefficients which are varied with time, and a table of the time variable coefficients which are held fixed at the values corresponding to when maximum dynamic pressure occurs.

4.2.1 Equations

1. Moment

$$I_{3} \stackrel{:}{\Theta} = -\left[\frac{T}{4} \left(1_{3} + \sqrt{r^{2} + 1_{3}^{2}} \cos (\beta - \beta_{1d})\right) + m_{n} \frac{T - D}{M_{1}}\right] \delta$$

$$-\left[I_{n} + m_{n} 1_{n} 1_{3}\right] \delta$$

$$+ N^{1} \left(\xi_{cp} - \xi_{3}\right) \alpha$$

$$+ m_{L} \left[\frac{T - D}{M_{1}} + \alpha_{L}^{2} \left(\xi_{L} - \xi_{3}\right)\right] \lambda_{L}$$

$$+ m_{F} \left[\frac{T - D}{M_{1}} + \alpha_{F}^{2} \left(\xi_{F} - \xi_{3}\right)\right] \lambda_{F}$$

$$- -\frac{T}{8} \sqrt{r^{2} + 1_{3}^{2}} \left(\beta - \beta_{1d}\right)^{*}$$

2. Acceleration Normal to Missile Centerline

$$M_3 = R' \delta + m_n l_n \delta + N' \alpha + m_L \alpha_L^2 \lambda_L + m_F \alpha_F^2 \lambda_F + \frac{T}{8} \sin \beta^*$$

3. Acceleration Mormal to Reference

$$z_{T_g} = z_{B_3} + (\xi_g - \xi_3) + \frac{T - D}{M_1} = 0$$

4. Angular Relation

$$\alpha - \alpha_w = \psi$$

5. Normal Force Equation

$$v(\theta - \dot{\psi}) = z_{B_3} + (\xi - \xi_3) \theta$$

$$+ g \cos \psi_0 (\theta - \psi) + \frac{T - D}{M_1} \psi$$

^{*} Present only in engine-out case

^{**} All Zeaccelerations do not include gravity

6. Slosh Equations

$$\lambda_{L} = -z_{B_{3}} - (\xi_{L} - \xi_{3}) - z\zeta_{L}\omega_{L}\lambda_{L} - \omega_{L}^{2}\lambda_{L}$$

$$\lambda_{F} = -z_{B_{3}} - (\xi_{F} - \xi_{3}) - z\zeta_{F}\omega_{F}\lambda_{F} - \omega_{F}^{2}\lambda_{F}$$

7. Engine Dynamics

$$\delta = -\frac{\prod_{n=1}^{m} \prod_{n=1}^{m} \frac{1}{3}}{\prod_{n=1}^{m} \frac{1}{\prod_{n=1}^{m}}} + 2 \frac{\zeta_{n}}{\alpha_{n}} \omega_{n} \delta_{n} + \omega_{n}^{2} \delta_{n}$$

$$-2 \frac{\zeta_{n}}{\alpha_{n}} \omega_{n} \delta_{n} - (\omega_{n}^{2} + \frac{m_{n}^{2} \prod_{n=1}^{m} \frac{T_{n}^{2} D}{M_{1}}}{\sum_{n=1}^{m} \frac{T_{n}^{2} D}{M_{1}}}) \delta_{n}$$

8. Actuator Equation

$$\delta_{a} = \omega_{a}^{2} \delta_{c} - 2 \zeta_{a} \omega_{a} \delta_{a} - \omega_{b}^{2} \delta_{a}$$

9. Angle-of-Attack Meter Equation

$$\alpha_1 = -\frac{\xi_{\alpha} - \xi_2}{v} \dot{\theta} + \alpha$$

10. Accelerometer Dynamics

$$A_{i} = \omega_{A}^{2} Z_{B_{3}} + \omega_{A}^{2} (\xi_{A} - \xi_{3}) \Theta$$

$$- z \zeta_{A} \omega_{A} A_{i} - \omega_{A}^{2} A_{i}$$

11. Measured Acceleration Normal to Reference

$$Z_{T_1} = A_1 + \frac{T - D}{K_1} \circ$$

4.2.2 Analog Computer Mechanization

This section contains diagrams of the analog computer setup used in the study of the programmed and the adaptive angle-of-attack control systems. A discussion of the check procedure used to verify the analog computer mechanization is also included.

Figures 4 and 5 are the mechanization diagrams of the missile dynamics as described by the equations listed in Section 4.2.1. Figures 6 and 7 are the mechanization diagrams for the wind disturbances and the engine out disturbance. In this study, the engine out disturbance consisted of the inclusion of a disturbance moment and a disturbance normal force and the reduction of the control moment per unit of control deflection. The engine failure was simulated by using an exponential thrust decay with a one-third second time constant.

A detailed check procedure was used to verify the analog computer mechanization of the missile dynamics and the basic angle-of-attack control system. Frequency response checks of the analog computer mechanization were made at two times of flight with all time-varying coefficients fixed. These results were compared with the frequency response data obtain 1 from the digital computer analysis of the simplified system equations given in Section 4.1.1, and the results agreed. Transient responses to step changes in angle of attack due to wind and to step attitude position commands were also measured at two times of flight and compared with the results of digital computer solutions of the simplified equations. These results also agreed. Finally, static checks of the analog computer mechanization were made, and all time-variable coefficients were checked by reading them cut on an x-y plotter.

Definition of Variable Parameters on Computer Mechanization Diagrams

$$f_n = d_n (x_n + e_n/d_n)$$

$ \frac{r_{n}}{1} \qquad \frac{r_{n}}{1} \qquad \frac{r_{n}}{1} \left[1_{3} + \sqrt{r^{2} + 1_{3}^{2}} \cos (\beta - \beta_{1d}) \right] \\ + m_{n} 1_{n} (T - D)/M_{1} \\ +$	<u>n</u>	<u>f</u> n
2 $N'(\dot{\xi}_{cp} - \dot{\xi}_{3})$ 3 $1/I_{3}$ $M_{L} \left[(T - D)/M_{1} + \omega_{L}^{2} (\dot{\xi}_{L} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} - \dot{\xi}_{3}) \right]$ $M_{F} \left[(T - D)/M_{1} + \omega_{F}^{2} (\dot{\xi}_{F} -$	1	$\frac{T}{4} \left[l_3 + \sqrt{r^2 + l_3^2} \cos (\beta - \beta_{id}) \right]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+ m _n l _n (T - D)/M _l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$N'(\xi_{cp} - \xi_3)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	.)
7 8 8 N' 9 1/M ₃ 10 $(T - D)/M_1$ 11 $(T - D)/M_3$ 12 1/V 13 $g \cos \gamma_0/V$ 14 ω_F^2 15 $\xi_L - \xi_3$ 16 $\xi_F - \xi_3$ 17 $(\xi_\alpha - \xi_2)/V$ 18	4	
7 8 8 N' 9 1/M ₃ 10 $(T - D)/M_1$ 11 $(T - D)/M_3$ 12 1/V 13 $g \cos \gamma_0/V$ 14 ω_F^2 15 $\xi_L - \xi_3$ 16 $\xi_F - \xi_3$ 17 $(\xi_\alpha - \xi_2)/V$ 18	ÿ	$M_{\rm F} \left[(T - D) / M_1 + \alpha_{\rm F}^2 (\xi_{\rm F} - \xi_3) \right]$
8	6	$T/8\sqrt{r^2+l_3^2} (\beta-\beta_{id})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R'
10 $(T - D)/M_1$ 11 $(T - D)/M_3$ 12 $1/V$ 13 $g \cos \gamma_0/V$ 14 ω_F^2 15 $\xi_L - \xi_3$ 16 $\xi_F - \xi_3$ 17 $(\xi_\alpha - \xi_2)/V$ 18	8	N'
11 $ (T - D)/M_3 $ 12 $ 1/V $ 13 $ g \cos \gamma_0/V $ 14 $ \omega_F^2 $ 15 $ \xi_L - \xi_3 $ 16 $ \xi_F - \xi_3 $ 17 $ (\xi_\alpha - \xi_2)/V $ 18	9	1/M ₃
12 1/V g cos γ_0/V 14 ω_y^2 15 $\xi_L - \xi_3$ 16 $\xi_F - \xi_3$ 17 $(\xi_\alpha - \xi_2)/V$ 18	10	(T - D)/M ₁
13 $g \cos \gamma_0/V$ 14 ω_F^2 15 $\xi_L - \xi_3$ 16 $\xi_F - \xi_3$ 17 $(\xi_\alpha - \xi_2)/V$ 18	11	(T - D)/M ₃
14 $\omega_{\mathbb{F}}^{2}$ 15 $\xi_{L} - \xi_{3}$ 16 $\xi_{\mathbb{F}} - \xi_{3}$ 17 $(\xi_{\alpha} - \xi_{2})/v$ 18	12	1/7
15 $\xi_{L} - \xi_{3}$ 16 $\xi_{F} - \xi_{3}$ 17 $(\xi_{\alpha} - \xi_{2})/v$ 18 q	13	g cos _{Yo} /V
16 $\xi_{F} - \xi_{3}$ 17 $(\xi_{\alpha} - \xi_{2})/v$ 18 q	14	
16 $\xi_{F} - \xi_{3}$ 17 $(\xi_{\alpha} - \xi_{2})/v$ 18 q	15	$\xi_{\rm L}$ - $\xi_{\rm 3}$
18 q	16	
-	17	$(\xi_{\alpha} - \overline{\xi_{2}})/V$
	18	q
	19	

4.2.3	Table of Constant Coefficients	
		_
$\mathbf{m}_{\mathbf{L}}$	2647.2183	kg-sec ² /m
^m F	1156.1508	kg-sec ² /m
m l n n	204.67	kg-sec ² /m
$m_n l_n / l_n$.64253	m ⁻¹
	. 5883045	
$(\omega_{\rm L}/\omega_{\rm F})^2$.3461022	
$\frac{\omega_{\mathrm{L}}/\omega_{\mathrm{F}}}{(\omega_{\mathrm{L}}/\omega_{\mathrm{F}})^2}$	3197.90	sec ⁻²
2 Zawa	7970	sec -1
w _a 2	1190,25	sec ⁻²
2 \ w	66.654	sec ⁻¹
o n	3947.61	sec ⁻²
$z\zeta_{nm}$	8.7962	sec ⁻¹

		4.2.4 Table	Table of Variable Coefficients	Coefficients			
Time	Time $\frac{T}{k} \left[\frac{1}{3} + \sqrt{r^2 + 1} \frac{2}{3} \cos(\beta - \beta_{1d}) \right]$	N'(\$cp-\$3)	$^{1/I}_3$	F. N. P. D. S.	T A	$\frac{\mathbf{T}}{8}\sqrt{\mathbf{r}^{2}+1_{3}}^{2}(\mathbf{\beta}-\mathbf{\beta}_{1d})$	ਕੇ) ਸ਼'
	tal K		+	+ªL_(SL-53)	+m* (5*-53)		
ည္တမွာ	n Sy	Kg m	kg sec m	894 Services	, , k	kg m	kg
0	3524027	0.	.43683X10 -6	203707	120374	-87834	278345
97	3444800	123703	\$ 01X0005t	212542	105087	064 06-	299265
8	3408227	548547	9-otxz£194	227409	90427.9	-93186	301990
30	3368470	1406703	9-01X10074.	246182	76770.3	-97053	306715
O I	3387380	2782277	9-01X12374.	271028	58965.6	-100454	313125
50	3436178	4301917	9-01X61974.	462462	34997.4	-103636	320500
8	3479823	5430740	.47735X10-6	322484	6126.67	-106872	327700
19	3463467	5985020	9-01X201841.	352191	-15879.2	-109146	332057
02	3531857	5860357	. 148288X10	361809	-29832.3	+01601-	353660
8	3611764	5314258	. 48527X10-6	402028	-79825.5	-109437	337645
8	3724638	4183203	9-01XE1684	470624	-148262	-107326	339905
100	3652598	2585712	9-0100164.	485100	-239817	-105114	340995
110	4141259	1255974	.50695X10*6	\$1096h	-383190	-97766	341430
120	1911194	525921.7	.54693X10 ⁻⁶	508663	-602972	-85447	34158579
130	5370487	195906.5	.63099X10 ⁺⁶	922644	-953616	-65668	341635 (4)
138.9	6293281	65859.8	. 78697X10 ⁻⁶	324441	-1422018	-41492	341655
5.441	3378434	23724.9	.91642X10 ⁻⁶ ,	165623	-1820959	-14682	170830

٤.

Time M'	, <u>, , , , , , , , , , , , , , , , , , </u>	1/M ₃	G-T	1/v	N/c1/soo 8	ુ સ	\$_1.5
ညမွှေ	S N	и/к в se c ²	m/sec ²	sec/m	sec_1	2-29	Ħ
. 0	000000.	.23766x10 ⁻⁴	13.0	8	8	20.430	9.0383
1.0	\$488.6736	.25258 x 10 ⁻⁴	13.7	.0277778	.2719447	20.612	9.3407
80	24.096.62	. 26860X10 ⁻⁴	14.6	.0129870	.1270490	21.530	9.5674
30	60977.8	. 28730X10 ⁻¹⁴	72.6	.00757576	.0736752	22.658	9.8720
⊋	964211	.30879X10-4	16.8	.00505051	.0482537	209.42	10.0373
50	185942	.33377X10 ⁻⁴	17.7	.00361011	.0333567	26.729	10.1346
8	237025	.36312X10 ⁻⁴	18.3	.00273973	4701450.	29.268	10.2373
£9	265364	.38695X10 ⁻⁴	19.8	.00228311	.019239	31.655	10.3361
6	264410	.39815×10 ⁻⁴	20.7	91411800.	.0174368	32.604	10.2724
8	255325	,44066XIO-4	23.8	.00162338	.0124206	36.361	10.1625
8	216597	. 49334X10 ⁻⁴	27.2	.00125313	.00885465	175.04	9.9054
100	143689	. 56029X10 ⁻⁴	31.0	.00097943	.00639112	45.968	9.5634
110	75768.8	.64830X10-4	35.3	.00077519	.00469317	52.148	8.7321
120	34607.4	.76911X10-4	9.04	.00062112	.00355699	59.598	7.3525
130	14864.6	.74527X10 ⁻⁴	47.5	.00050125	.0265829	68.890	5:1393
138.9	5716.25	.11886X10 ⁻³	55.9	,00041494	.00209222	79.032	2.4370
144.9	2233.957	.13011100-3	29.7	.00039170	.00191737	87.984	1.0786

Time	Time $\xi_{\mathbb{F}}^- \xi_{\mathbb{F}}$	$(\xi_{\alpha}^{-}\xi_{2})/v$	5 [†]	×	8 ^{2rd}	ે ^{ક્રુલ}	8 *****
ည္တမွာ	a	sec	kg/m ²	-	rad	red	red
0	4.4599	8	0000	0000.	0000	8	0000
ot	3.7451	₩800¢	82	.0249551	.0122	.1569	.0122
02	2-9547	42434	360	.10210951	.0201	5460.	.0201
30	2.2421	.24397	116	.2253401	.0302	.0822	-0302
04	1.3902	.16345	1738	.3590388	.0380	.0811	.0380
20	. 4703	91711.	5684	2469414.	.0455	6480.	.0455
09	2444	.089170	3325	.5447128	.0630	.0903	•0630
19	-1.0574	.074518	3524	.5652331	2171.	.1712	1712
70	-1.4263	.068860	3435	.550270	.0803	.0803	.1586
8	-2.5534	.052670	, , , , , , , , , , , , , , , , , , ,	5202750	.0201	.0433	.0866
8	-3.8307	40£040.	2143	.4534933	.0008	.0157	.0313
100	-5.1868	.031140	ħ/2 T	.3352121	0000	.0122	.0245
011	-7.0353	.023964	545	.1957609	0000	.0180	.0360
120	-9.4321	.018295	298	.09234529	.0000	9420.	2640.
130	-12.6625	.013583	135	.03776718	0000	5620.	.0590
136.9	-16.270	.010030	19	.01381375	0000	0620.	.0581
9.441	-18.2388	.0088872	25	.01067730	0000	4/20.	.0548

		4.2.5 Table	4.2.5 Table of Variable Coefficients Which Ara Held Fixed	icients Wh	ich Are Held	l.Fised	
Time	T sin b	Intm 1 1 3	$(I_n + m_n I_n I_3)/I_n \xi_2 - \xi_3 \xi_n - \xi_3$	ξ <u>-</u> ξ	\$. \$.	C T T T T T T T T T T T T T T T T T T T	ω (ξ _A - ξ ₃)
Sec	89 .	Kg sec m	2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	呂	Ħ	2 - 0 89	m/sec
0	7796.352	0 7796.352 2715.06	8.5234	.0885	87-15#8	395 5.9 6	86831.9
10	7820.393	2653.17	8.3291	9160.	27.4552	3956.41	9.66778
.03	7891.603	2606.77	8.1834	.0959	27.6819	39 56.99	88523.9
30	8015.076	2544.43	7.9877	6660.	27.9865	3957.63	0.86468
약	8182.583	2510.60	7.8815	.1059	28,1518	39 58. 40	9.92006
20	8575.306	2490.68	7.8190	9811.	28.2491	39 58. 98	90337.8
8	8563.456	39.6942	7.7530	.1226	28.3518	3959.37	309996
29	8677.300	44.6442	7.6895	,1296	28.4506	3960.33	3.28606
2	8713.203	2462.48	7.7305	.1342	28.3869	3960.91	90778.5
80	8823.339	2484.97	7.8011	.1501	28.2770	3965.90	0.72406
8	8882.397	2538.21	7.9682	.1723	28.0169	3965.09	89595.2
100	8910.881	5607.59	8.1860	,2017	27.6779	3967.53	88511.2
011	8922.249	2777-73	8.7201	.2505	36.8466	3970.29	85852.7
120	8926.299	3060.09	9,6065	.3306	25.4670	3973.70	81440.9
130	9057.606	3513.07	11.029	.4728	23.2538	3978.13	74363.3
138.9	8928.128	4066.15	12.765	,698	20.5515	3983.53	65721.6
144.9	4464.130	72.4484	13.638	.8220	19,1931	3966.69	61377.6

5. ADAPTIVE DIGITAL-COMPENSATION STUDY

This section contains the equations and parameters for use in the study of flexible-body stability using an adaptive digital-compensation control system. The coordinate system and missile geometry conventions used are shown in Figures 8 and 9.

In using the equations listed in this section in 5.1, an attempt is made to include all linear terms consistent with the following assumptions:

- 1. All physical parameters of the missile such as mass, inertia, and thrust are considered constant.
- 2. Aerodynamic forces are assumed to be independent of the local bending slope and are assumed to vary linearly with the total angle of attack developed by the average centerline of the missile.
- 3. The dynamic equations are for motions in the missile yaw plane. The trim conditions on \sim , Θ , and δ will be zero in this plane. The equations are also applicable to the pitch plane if the trimmed values of these variables may be neglected.
- 4. Normal modes are determined for free-free end conditions and include effects of bending and shear. Effect of axial force on bending is neglected. The bending mode data given in Section 3.4, which were generated with the control engines removed, have been renormalized to give bending modes for the complete missile with locked actuators and with modal masses equal to the total mass of the missile. The data was renormalized to this form to allow simplification of the equations and, thus, reduced complexity in the analog computer mechanization.
- 5. The control thrust, defined as the thrust available for control in a given plane, is equal to 1/2 the total thrust and comes from one engine on the missile body centerline.
- 6. The effects of fluid sloshing in the tanks are neglected.

The basic missile and trajectory parameters used in the linear stability studies of the Saturn C-1 configuration are given in Sections 5.2, 5.3, and 5.4. These parameters were used as inputs to the digital computer runs used in the linear stability studies. Section 5.2 lists the parameters that remain constant during the booster flight. Section 5.3 lists the variable parameters at the

three times of flight which were investigated. Section 5.4 describes the renormalization computation made on the bending data given in Section 3.4. The renormalized bending data is presented in graphical form.

The analog computer mechanization of the missile dynamics used in this study is described in Section 5.5. The computed coefficients of the equations mechanized are listed in Section 5.6.

Figure 8
Coordinate System for Bending Study

Figure 9 Missile Geometry for Bending Study

5.1 Equations

1. Acceleration Equations

$$M_1 a_y - N' \alpha + (M g \cos \gamma_0) \theta + Dw - T \psi_T - R' \delta + \frac{T}{8} \sin \beta^* = 0$$

$$a_x = \frac{T-D}{M} - g \cos \gamma_0$$

2. Normal Force Equation

$$a_y + (Vs + a_x) \alpha + Vs\theta - (Vs + a_y)w + (Vs \cdot a_x)\alpha_w = 0$$

3. Moment Equation

$$\frac{N'^{1}_{p}}{I_{1}}\alpha + s^{2}\theta + \frac{D}{I_{1}} v - \frac{T}{I_{1}} \mu_{T} + \frac{T}{8I_{1}} \left[r^{2} + I_{1}^{2}\right]^{\frac{1}{2}} (\beta - \beta_{1d})^{*}$$

$$-\frac{T^{1}_{1}}{I_{1}} \psi_{T} - \frac{R'^{1}_{1}}{I_{1}} \delta = 0$$

4. Centerline Deflection Equation

$$\mathbf{M}_{1}\mathbf{v} - \mathbf{m}_{1}\mathbf{h} \delta = 0$$

5. Centerline Rotation Equation

$$I_1 w + (I_n + I_1 I_n m_n) \delta = 0$$

6. Gimbal Displacement Equation

$$\mu_{T} - v + 1_{1} w - \sum_{i} \phi_{i} (\xi_{T}) q_{i} = 0$$

7. Gimbal Slope Equation

$$\psi_{\rm T} - w - \sum_{i} \phi_{i}' (\xi_{\rm T}) q_{i} = 0$$

8. Bending Mode Amplitude Equation

$$\frac{T-D}{M_{1}} \phi_{1}' (\xi_{T}) v - \frac{T}{M_{1}} \phi_{1} (\xi_{T}) \psi_{T} + \frac{T}{8 M_{1}} \sin \beta \phi_{1} (\xi_{T})^{*}$$

$$- \frac{T}{8 M} r \cos \beta \phi_{1}' (\xi_{T})^{*} + (s^{2} + 2\zeta_{1} \omega_{1} s + \omega_{1}^{2}) q_{1}$$

$$+ \left[\frac{I_{n}}{M_{1}} \phi_{1}' (\xi_{T}) s^{2} - \frac{m_{n} I_{n}}{M_{1}} \phi_{1} (\xi_{T}) s^{2} - \frac{R'}{M_{1}} \phi_{1} (\xi_{T}) \right] \delta = 0$$

Present only in engine out case.

9. Engine Dynamics Equation

$$-\frac{m_{n} l_{n}}{l_{n}} a_{y} - \left[\frac{I_{r} + l_{1} l_{n} m_{n}}{l_{n}} s^{2} + \frac{m_{n} l_{n}}{I_{n}} g \cos \gamma_{o} \right] \Theta$$

$$+ \frac{T - D}{I_{n}} v - \frac{m_{n} l_{n}}{I_{n}} s^{2} \mu_{T} + \left[s^{2} + \frac{m_{n} l_{n}}{M_{1} l_{n}} (T - D) \right] \psi_{T}$$

$$+ s^{2} \delta + \left[2 \zeta_{n} \omega_{n} s + \omega_{n}^{2} \right] (\delta - \delta_{a}) = 0$$

10. Attitude Rate Sensor Equation

$$\frac{1}{\omega_{R}^{2}}\left[s^{2}+2\zeta_{R}\omega_{R}s+\omega_{R}^{2}\right]\dot{\theta}_{R}=s\left[\theta-w-\sum_{i}\theta_{i}^{i}\left(\xi_{R}\right)q_{i}\right]\left[\frac{1}{\tau_{P}s+1}\right]$$

11. Attitude Position Sensor Equation

$$\begin{bmatrix} r_{p s+1} \\ \theta_{p} = \theta - w - \sum_{i} \phi_{i}^{r} (\xi_{p}) q_{i} \end{bmatrix}$$

12. Hydraulic System Equation

$$(s^2 + 2\zeta_a \omega_a s + \omega_a^2) \delta_a = \omega_a^2 \delta_a$$

13. Lateral Acceleration Sensor Equation

$$a_n + a_y - (l_A s^2 + a_x) \theta + s^2 v + l_A s^2 w$$

+ $\sum_i \phi_i (\xi_A) s^2 q_i = 0$

5.2 Table of Constant Parameters

1/2 m _n	100.24	slugs
l _n	2.25	ft
1/2 I _n	1152	slug-ft ²
$\omega_{\mathtt{n}}$	62.8	rad/sec
$\omega_{\mathbf{n}}$	0.07	
$2 \zeta_{n} \omega_{n} (1/2 I_{n})$	10128	ft-lb-sec
2 ζ _n ω _n	8.792	1/sec
wa ²	1190.5	1/sec ²
2 ζ ω ω ω	66.67	l/sec
$\omega_{\mathtt{p}}$	188.4	rad/sec
$\dot{\xi}_{_{ m R}}$	0.7	
^τ p	1 282.6	sec
A	360.24	ft ²
é	32.12	ft/sec ²
ξ_{T}	100	in
E T T R P A	750	in
ξ _P	1.630	in
ξ_{A}	1800	in

5.3 Table of Variable Parameters

		Liftoff (t=0)	<u>Max Q (t=67</u>)	Burnout (<u>t=138.9</u>)
M	slugs	30829	19921	8209
ı	slug-ft ²	18.1 x 10 ⁶	16.9 x 10 ⁶	90.12 با
r_o	rad	·	.534071	1.029745
v	ft/sec	0	1437	79 07
T	lb	1315476	1464118	1506440
q	lb/ft ²	0	721.8	12.5
$^{\mathrm{C}}{}_{\mathrm{N}_{\boldsymbol{lpha}}}$	rad ⁻¹	2.00	2.25	2.80
D	1b	0	1 7 2710	461
ξ ₁	in	585.73	547.18	783.62
ξ ₁ ξ _{cp}	in	1436.4	1397.85	1274.49
ω _l	rad/sec	10.20174	13.12642	16.14596
ω _Z	rad/sec	28.46236	31.22392	45.52398
ω ₃	rad/sec	43.32002	49. 88555	85.67030
ζ_1		0.005	0.005	0.005
ζ_z		0.005	0.005	0.005
ζ_3		0.005	0.005	0.005

5.4 Renormalized Bending Data

7

The renormalized bending data, used in the linear stability studies described in Volume 1 and in the simulation of the missile dynamics for the study of the adaptive system, are presented in this section. This data is different from the bending mode data provided by MSFC for this study, which was generated with the control engines removed and is presented in Section 3.4. The original data was renormalized to give bending modes for the complete missile with locked actuators and with modal masses equal to the total mass of the missile. The method of renormalization used is described in detail in this section. The procedure was used to allow simplification of the missile dynamic equations by decoupling the bending modes and, thus, to reduce the complexity in the analog computer mechanization of these equations.

Plots of the modal deflections and slopes for the first three renormalized bending modes are presented in Figures 10 to 15.

With no external forces, such as aerodynamic forces, gravity, or thrust, acting on the missile, with actuators locked, using bending data generated with control engines removed, and neglecting structural damping, the missile dynamic equations reduce to:

$$A_{i}\dot{v} + B_{i}\dot{v} + \sum_{j=1}^{3} C_{ij}\dot{Q}_{j} + M_{B}\dot{Q}_{i} = 0 \quad (i=1,2,3)$$
 (5.4.1)

$$\mathbf{M} \mathbf{v} + \sum_{j=1}^{3} \mathbf{A}_{j} \mathbf{Q}_{j} = 0$$
 (5.4.2)

$$I w + \sum_{j=1}^{3} B_{j} Q_{j} = 0$$
 (5.4.3)

where

$$A_{i} = m_{i} \mathcal{C}_{i} (\dot{\varsigma}_{T}) - l_{n}m_{n} \dot{\mathcal{C}}_{i} (\dot{\varsigma}_{T})$$

$$B_{i} = -l_{1} A_{i} - m_{n}l_{1}$$

$$C_{i,j} = \mathcal{P}_{i} (\dot{S}_{T}) \dot{A}_{j} - m_{n} l_{j} \dot{\mathcal{E}}_{i} (\dot{S}_{T}) + \begin{cases} M_{B} & i=j \\ 0 & i\neq j \end{cases}$$

$$l_{i} = l_{n} \mathcal{P}_{i} (\dot{S}_{T}) - \frac{I_{n}}{m_{n}} \dot{\mathcal{E}}_{i} (\dot{S}_{T})$$

$$M_{B} = M - m_{n}$$

Substituting Equations 5.4.2 and 5.4.3 into Equation 5.4.1 and writing this result in matrix form gives

$$\begin{bmatrix} M \end{bmatrix} \quad \begin{bmatrix} Q \end{bmatrix} \quad s^2 \quad + \quad \begin{bmatrix} K \end{bmatrix} \quad \begin{bmatrix} Q \end{bmatrix} \quad = \quad 0 \tag{5.4.4}$$

With the equations written in this form, the coupling between the modes due to the engine results in off-diagonal terms in the matrix $\left[M\right]$. This matrix can be diagonalized, which decouples the bending modes, by expanding the coupled amplitude functions, Q_i , as a series of orthogonal functions, q_i , such that

$$Q_{j} = \sum_{i} e_{ji} q_{i}$$
 (5.4.5)

or, in matrix notation

The $\left[\text{E} \right]$ matrix is the modal matrix determined by solution of the characteristic value problem

$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} E \end{bmatrix} \begin{bmatrix} \omega^2 \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} E \end{bmatrix}$$
 (5.4.7)

where $\begin{bmatrix} \omega^2 \end{bmatrix}$ is a diagonal matrix with diagonal elements equal to the squares of the uncoupled frequencies (eigenvalues of the characteristic value problem).

Solution of the characteristic value problem, Equation 5.4.7, makes it possible to write the bending equations, Equation 5.4.4, in the form

$$\mathbf{M} \quad \left\{ \mathbf{s}^{2} \quad \left[\mathbf{I}\right] \quad \left[\mathbf{q}\right] \quad + \quad \left[\omega^{2}\right] \quad \left[\mathbf{q}\right] \right\} \quad = \quad 0 \tag{5.4.8}$$

where [I] is the identity matrix.

S S S

The modal matrix, $\left[\text{E} \right]$, has been normalized with respect to the total mass such that

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}_{\mathbf{T}} \begin{bmatrix} \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{E} \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{I} \end{bmatrix} \tag{5.4.9}$$

where $\left[\mathbf{E}\right]_{\mathbf{T}}$ represents the transposed modal matrix.

The displacement of the missile centerline may be expressed as follows:

$$\mathbf{u} = \sum_{\mathbf{j}} \phi_{\mathbf{j}} \mathbf{q}_{\mathbf{j}} = \sum_{\mathbf{j}} \mathcal{Q}_{\mathbf{j}} + \mathbf{v} + \mathbf{x}\mathbf{w}$$
 (5.4.10)

where ϕ_j is the mode deflection corresponding to the orthorgonal modal amplitude function, q_j , and $x = \frac{1}{12}$ ($\xi - \xi_1$).

Substituting Equations 5.4.2 and 5.4.3 into 5.4.10, this becomes

$$\sum_{j} \phi_{j} \quad q_{j} = \sum_{j} \left(\ell_{j} - \frac{A_{j}}{M} - x \frac{B_{j}}{I} \right) Q_{j}$$
 (5.4.11)

or in matrix notation

Substituting Equation 5.4.6 into 5.4.12,

Thus,

$$\left[\phi\right]_{T} = \left[\varphi - \frac{A}{M} - x \frac{B}{I}\right]_{T} \left[E\right] \tag{5.4.14}$$

or

$$\phi_{\mathbf{i}} = \sum_{\mathbf{j}} (\mathcal{Q}_{\mathbf{j}} - \frac{A_{\mathbf{j}}}{M} - \mathbf{x} \frac{B_{\mathbf{j}}}{\mathbf{I}}) e_{\mathbf{j}\mathbf{i}}$$
 (5.4.15)

The rotation of the missile centerline and center of mass may be expressed as follows:

$$\Psi = \sum_{j} \phi_{j} q_{j} = \sum_{j} \psi_{j} q_{j} + w \qquad (5.4.16)$$

where $\phi_{\mathbf{j}}$ is the mode slope corresponding to the orthogonal modal amplitude function, $\mathbf{q}_{\mathbf{j}}$.

Following the same procedure as above, the following is obtained:

$$\phi_{\mathbf{j}} = \sum_{\mathbf{j}} \left(\mathcal{P}_{\mathbf{j}} - \frac{\mathbf{B}_{\mathbf{j}}}{\mathbf{I}} \right) \mathbf{e}_{\mathbf{j}\mathbf{i}} \tag{5.4.17}$$

Thus, Equations 5.4.15 and 5.4.17 and the modal matrix $\begin{bmatrix} E \end{bmatrix}$ are used to obtain the renormalized mode deflections and slopes. The diagonal matrix $\begin{bmatrix} \omega \end{bmatrix}$ has as diagonal elements, the squares of the renormalized mode frequencies.

The original bending data, which was normalized to have unity deflection at the nose, was first renormalized, so that the modal mass of each mode equaled the total mass of the missile, by multiplying the mode data by $\sqrt{M/_{m.}}$. Thus,

$$\mathcal{Q}_{i} = \left[M/_{m_{i}} \right]^{\frac{1}{2}} \bar{\mathcal{Q}}_{i} \tag{5.4.18}$$

and

$$\varphi_{\mathbf{i}}' = \left[\frac{\mathbf{M}}{\mathbf{m}_{\mathbf{i}}}\right]^{\frac{1}{2}} \quad \overline{\varphi}_{\mathbf{i}}' \tag{5.4.19}$$

where \mathcal{V}_{i} and \mathcal{V}_{i} are the mode deflections and slopes of the original bending data.

A generalized eigenvalue digital computer program was then used to solve for the eigenvalues and eigenvectors of Equation 5.4.4. The eigenvalues obtained were then the renormalized mode frequencies, ω_1 . The eigenvectors obtained were normalized by assuming

$$\left[\mathbf{E} \right]_{\mathbf{T}} \left[\mathbf{M} \right] \left[\mathbf{E} \right] \approx \mathbf{M} \left[\mathbf{E} \right]_{\mathbf{T}} \left[\mathbf{E} \right]$$
 (5.4.20)

Thus, by Equation 5.4.9

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}_{\mathbf{T}} \quad \begin{bmatrix} \mathbf{E} \end{bmatrix} \approx \begin{bmatrix} \mathbf{I} \end{bmatrix}$$
 (5.4.21)

or

$$\sum_{i} e_{ji}^{2} = 1 \qquad (i=1,2,3) \qquad (5.4.22)$$

The modal matrix [E], and Equations 5.4.15 and 5.4.17 were used to compute the renormalized mode deflections and slopes. The results are plotted in Figures 10 to 15. The renormalized mode frequencies are given in Section 5.3.

																									Ø	220)-6	χJ	، کے ز	-R	٧-ر	900		
,		Γ.	1		1		T		1		i	-						- 7		7 — !	;		7		P	igo	ē. 5	2		-	ī		1	
, 		i i			1						F]		l			. 1		i	_	;		1		i		ì		,-	
							-	,					Γ; :												i		-		į		i	1		i
		<u> </u>	- +		-}-	. : -	; - j		ļ.,		i 								1	1			- !		-		i . ,-		-			-	-	
	١		1			•	1	,							}		į		i				-	:	-		1		1	-	Ì	į		!
		-	-+				┦-									-				ļ'			-	,				-1			🕂	- <u>- i</u> _		
: [1.	Ì	-	1	į		:		,				-			:		٠	!	-	,	-	:	i	,			i	- }	1	1.
		 	1		+		+-	-	+		-	•						- 1			}				-+			- †		-	+		+	- †
.	- <i>•</i>			•	-		İ	ļ-					-	-			ì				i	-		-		,		,			-	;	+	-
		1	-		-		1		1	-	-				_				1	1	1			1	_		-			, -			T	
		j i	ا ــــ	! _		1	<u> </u>	<u> </u>	<u> </u>	!	_	!					· 1			1					_]	9	Ĵ.	. <u></u>			1			1
				_; -	-				T			1 -					,			,	_	!		1		2000	-	. !	-	:			1.	
			.!	<u>```</u> `,	1.		.		\perp	-	_	<u> </u>							L.	<u></u>			_		_	 	_ _	_+		<u> </u>	_ -	-	4-	
. 1		Ì		\	Ĵ	``;``.		i.			1						. ;		1		Ì	: :		1		1	1		.	1	-	.].	1	
		-		:	+	×-	+	<u>.</u> ,	Ĺ		-		~							-					{				.		-		+	-
į	·	'	-	;	ļ	, '		÷-	1	٠,	-	ļ	. '	``	\.		- 1	-	- ; -		- 1	:		- 1.		1		. ;	- }	- !		-	+-	1
		-	- <u>8</u>		+	-:-	+-	+	1			<u> </u>		-	 `	-				1			+				-+	+	-+		+	+	+	+
•	"]		נכטי	;		-	-	-			1	ļ.,	-	``		;-	`		: :	j †	١		-	i	-	009/	$\frac{1}{2}$		Ì	i	-1	†		
			- 1	:	+		†-		1-		_	1		•	` ~;	`,			1	1-1	\dashv				-	19	Z,	7	_	1	1	_	1	
		3	0				1	i	Ĺ	1		-			-		```	_		\sum_{i}						· ·	3	 		. لىيىس	\perp		I	
	Ti chire io	}	300	LIFTCAF			1					!		-				_		1	<u> </u>			1		ŧ	STATION (INCHES)	į		.		- I	_ .	
		<u>.</u>	3		ij.	ļ	-		Ļ	-	ļ	!	_	<u>_</u>			\geq	_		1	_		24		-	i.	I.	- ‡	-			_Ļ	+	_
1	- 2	Ϊ.	01/4	١.	li	1	ļ	7	ļ					•	ļ				<u>.</u>	;		٠,	-]	`\`		. !	ł	!	-	٠ ;	-		-	-
			PEN.	N.	Q	<u>.</u> -	-	-[. <u>-</u>					-	_			_+>				``\		7	+	수 :	<u> </u>	-+	_ļ.	-+		+	-
		-	7. 7	5	Ž	Cutoff		1		-		-		 !	-	-			- -	1			-	- 1	:	7.		.					-	
	} <u>-</u>	ļ	, is	_H _	Σ.	S	+			-,	 		 			_					}			+	-	188	/	+	-+	+	-		+	1
		i '	+		1		1	•		!	i	1	ĺ	:	Ϊ.	-	- 1			1		,	1				N	i	1	1-	-	1	-	-
		;				:	-i -		-		† -	,				!			_ 1.			7		1				Ż					T	
i	i ' ⊷				ĺ.		!		1_	, 		<u>!</u>			ļ	<u></u>		_		<u>ا</u> ـ ا					_}	7	_ .	1	1	<u>ا</u> ٺــ	_	1	_	1
!	! !	1		;	-		1	- !			.		ŀ	i ;			'	٠	i ,	-	-	1	!	1	-	`	V			(4)				
	; 	+-;		<u> </u>	+		-	<u> </u>	ļ.,		ļ	:	 											-		+	4	+	-	1 1	-+	- -		
٠	;	,			Í	•	-	÷	-	÷ .	į .			, .	ŀ			-	-				į	- -		İ		,	\vdash	H	+	- -	- -	-
					- -	- 1	+-				ļ·	 -	ļ			 	-			 			+		-+	8	+		\forall	7	+		+	1
	- !		İ		ĺ			;- ·		!		-	İ	 !	l I			-	1	} :			-	- [-	•	i	-	V	1	11	+	+	
	 	†			- † -	-	+-		1-	-	+		ļ									-		1	1		1	i	-#	/]	1			
! !	- +- 				_	, .		,	1		L			1					1					1		_		·]/	1			I	
	1.			,	1		1		-	1-				_	1	١			-		-		T		\cdot	. !		Ï	/,	1	[_	
	,	1_			_				- -			!		-	L-	!				-		_	_		-	;	-/	4	-		_	-	4.	_
l		-	1		-	;				:		ŀ							1.			,	.	;			//			ŀ				
	├- -	 			+		-		+	- 	ļ	!-	-			-			1	+-					-{	ě	1	+	+		-	+	+	-
:	ļ		. }	:		-		-	- -	;-	ļ	!	1	-	1				-	-	•		- {	1	Λ	زور دور	4	_l.	- †	- į		+	+	-
		+-;	-			- ;	Ť	-	+		 	-	+		-		-			 				1	<u>,</u> †	/-	-			-+	+	+	+	-
	-		-					ij		1	-	-	1	-		:-			i-				X	//	1	1	1	- 1	-	1.	-		1	- 1
		 			+	†	†	- i-	1-		1	-	1				_					7		1		7	7	Ţ					T	1
]		-1		1				1.		<u> </u>	1.	Ι.				_			_/	1	1			لُـــ			_			·.[
				1.		i	. .		1	١.		ļ		ļ	١.			-		1	<i>!</i> ·	1		;		!	-					-4		11
-		-			4		_	<u>.</u>	+		_	i	<u> </u>	:	_		\sqcup	ب		de:		-	_	<u>.</u>	4	0	-	-	ᆛ	+			+	_
		-	9	-; -		, 1	9	. !		, ;	4	!	i			ļ		2.0			7			ļ.	9	- -		-	- 1.0					
<u>-</u>	}	-			-		+		+	-4	-		-	-				1	 	╂-┤							+	_1		<u>.</u>	-		+	-
			į			- ; -	-			!	İ			į			7.	70	3004	1 !				٠.		-	ŀ		-	- 7		· ; j-	-	÷
		-	,		-†	 -	+		+-			i	-	 -	 					†		r:			1		+	-+	1	+	-	+	-	
;	1 :		•	;	1	1	1	i	ļ		i		ĺ	- -	ļ	I	-	•		İ				1		1		į.		i	1			•-·
					T	. <u></u>	†		1	;	-			!	† 	-						-			-	-		† † 	7			. '1		
		ì		1	1		1	:	1	1	} '	1	1	,	Į.		1			ί '		, ,	1	;	1	,	ļ	- 1	i	i	- }	7.	7	

5.5 Analog Computer Mechanization

The diagrams of the analog computer mechanization of the Saturn C-1 missile dynamics used in the study of the adaptive digital bending compensation control system are contained in this section. A discussion of the check procedure used to verify the analog computer mechanization is also included.

Figures 16 and 17 are the mechanization diagrams of the missile dynamics. The equations of the missile dynamics used for the computer mechanization can be found in Section 5.1. These equations were mechanized as listed, with the exception that the attitude rate sensor dynamics and the attitude position sensor dynamics were neglected.

Since this was a study of the flexible body dynamics, the simulation was scaled for a small signal study and, therefore, a linear actuator model was used. This is a conservative approach since, if actuator rate limiting is included, smaller bending mode amplitudes will result than if this limiting is included for a large disturbance input, such as a wind shear disturbance.

In this portion of the study, only the missile configuration corresponding to the flight condition at the time of maximum dynamic pressure was simulated. The coefficients of the equations mechanized are given in Section 5.6 for this flight condition.

The control law used, disregarding the bending compensation provided by the adaptive system, was

$$\delta_{c} = -a_{o} \left[\theta_{p} + \frac{a_{1}}{a_{o}} \cdot \theta_{R} \right].$$

A detailed check procedure was used to verify the analog computer mechanization of the missile dynamics. A static check of the mechanization was made by applying initial conditions to all of the integrators and reading the values of all the computer variables (outputs of all of the amplifiers). These were compared with precomputed values and satisfactory agreement was obtained.

Dynamic checks of the computer mechanization were made by recording the response of the control system to a step attitude command input. For this check, the digital computer was not used; therefore, the continuous system response was recorded. This time response was compared with one obtained from a digital computer computation of the closed loop response of the system described by the equations listed in Section 5.1, and the results agreed.

Missile Dynamics Computer Mechanization Diagram (Sheet 2)

5.6. Table of Computed Coefficients (At time of maximum dynamic pressure)

N'/M ₁	29.3683932	ft/sec ²
g cos γ_0	27.6470293	ft/sec ³
DI _E /M ₁ I ₁	.0098052749	ft/sec^2
T/M ₁	73.49621	${ t ft/sec}^2$
R'/M ₁	36.748105	ft/sec ²
1/V	.0006958942	sec/ft
a _x /V	.0258729534	sec-l
a _x I _E /VI ₁	.000029261692	sec ^{-l}
I _E /I ₁	.00113097609	sec-1
N ^r l _p /I _l	2.4540561	sec ⁻²
$Dm_n^1 n/1 M_1$.000231405244	sec ⁻²
T/I_1	.0866342	ft sec
$\mathbf{Tl}_1/\mathbf{I}_1$	3.2284235	seç ⁻²
R'1 ₁ / I 1	1.6142118	sec ⁻²
m _n l _n /M ₁	.022643442	ŗt
	.042145824	ft
$\phi_1(\hat{\varsigma}_T)$.97378299	
$\phi_{\mathbf{z}}(\xi_{\mathbf{T}})$	- 1.157848	
$\phi_3(\zeta_T)$	1.864179	,
$\phi_1'(\frac{1}{2}, \frac{1}{m})$	067165679	ft ⁻¹
$\phi_{\mathbf{z}}^{\mathbf{T}}(\xi_{\mathbf{T}})$.11517660	ft ⁻¹
$\phi_{i}^{r}(\hat{c}_{m})$	19540404	ft ⁻¹
$2\zeta_1\omega_1$.13126419	sec ⁻¹
2 (2 0)	.31223919	sec ⁻¹
2 (, ω,	.49885549	sec-1
_2 ² 3.3 .	172.3029	sec ⁻²
2>3 3 W1 Z W2	974.93316	sec ⁻²
ω ₃	2483.568	sec ⁻²
$\frac{\mathbf{T}-\mathbf{D}}{\mathbf{M}_{1}} \phi_{1}'(\hat{\boldsymbol{\xi}}_{\mathbf{T}}) \frac{\mathbf{m}_{1}^{1}\mathbf{n}}{\mathbf{M}_{1}}$	098592116	ft/sec ²
	-	~
$\frac{\mathbf{T}-\mathbf{D}}{\mathbf{M}_{1}} \phi_{2}^{\bullet}(\ \ \mathbf{T}) \frac{\mathbf{m}_{1}\mathbf{n}}{\mathbf{M}_{1}}$.1690570695	ft/sec ²
$\frac{\mathbf{T}-\mathbf{D}}{\mathbf{M}_{1}} \emptyset_{3}^{L}(\xi_{\mathbf{T}}) \frac{\mathbf{m}_{n}^{L}_{n}}{\mathbf{M}_{1}}$	2868324729	ft/sec ²

5.6 Table of Computed Coefficients (At time of maximum dynamic pressure) - Cont.

$\mathbf{T} \phi_{1}(\xi_{\mathbf{T}})/\mathbf{M}_{1}$	71.569359	ft/sec ²
$\mathbb{T}_{2}^{(\xi_{\mathbf{T}})/\mathbf{M}_{1}}$	-85.0971438	ft/sec^2
$T\phi_3(\xi_T)/M_1$. 37.01009	ft/sec^2
m _n d ₁ /M ₁	029817968	ft
$m_n d_2/M_1$.039538624	. ft
$m_n d_3/M_1$	064811241	ft
$R'\phi_1(\xi_T)/M_1$	35.78'+679	ft/sec ²
$R' \phi_2 (\frac{1}{\zeta_T}) / M_1$	-42.548719	ft/sec ²
$R'\phi_3^2(\xi_T)/M_1$	68:505044	ft/sec ²
$2 \leq n \omega_n$	8.7916666	\mathtt{sec}^{-1}
$\omega_{\rm n}^{2^{J_{\rm n}}}$	3943.8399	sec ⁻²
m _n l _n /I _n	.19578125	ft ⁻¹
$1_{\mathbb{E}}/I_{\mathbb{R}}$	8.2957880	
m _n l _n gcos $\sqrt[n]{o}/I_n$	5.41276996	sec ⁻²
$(T-D)m_n l_n / M_l l_n$	12.691806	sec -2
$\phi_1(\xi_p)$	007533599	rt ⁻¹
$\phi_{2}(\hat{\xi}_{n})$	05770295	. ft⁻¹
$\phi_2(\xi_p)$.08320151	ft ⁻¹
$\varphi_{1}^{2}(\tilde{\xi}_{n}^{2})$.10202856	rt ⁻¹
$\phi_2^{\bullet}(\frac{SP}{CP})$.19171396	ft ⁻¹
$\phi_3^{\mathbf{r}}(\hat{\mathcal{E}}_{\mathbf{p}}^{\mathbf{r}})$.10423876	ft ⁻¹
2 (66.670	sec ⁻¹
ພ _ຂ ີ້ ເ	1190.5	sec ⁻²
a /a o	0.5	
a _o	3.55	y.

REFERENCES

- Wind Speed and Wind Shear Dava, Cape Canaveral, Florida", MSFC Memorandum for SATURN Vehicle Dynamics and Control Working Group, 2 February 1961, W. W. Vaughan.
- 2. "Study of the Control and Dynamic Stability Problem of the SATURN Space Vehicle, Especially the C-1 Configuration", STL Proposal 0353.00, 25 January 1961.